810 research outputs found

    On Optimal Turbo Decoding of Wideband MIMO-OFDM Systems Under Imperfect Channel State Information

    Full text link
    We consider the decoding of bit interleaved coded modulation (BICM) applied to both multiband and MIMO OFDM systems for typical scenarios where only a noisy (possibly very bad) estimate of the channel is provided by sending a limited number of pilot symbols. First, by using a Bayesian framework involving the channel a posteriori density, we adopt a practical decoding metric that is robust to the presence of channel estimation errors. Then this metric is used in the demapping part of BICM multiband and MIMO OFDM receivers. We also compare our results with the performance of a mismatched decoder that replaces the channel by its estimate in the decoding metric. Numerical results over both realistic UWB and theoretical Rayleigh fading channels show that the proposed method provides significant gain in terms of bit error rate compared to the classical mismatched detector, without introducing any additional complexity

    Adaptation of Zerotrees Using Signed Binary Digit Representations for 3D Image Coding

    Get PDF
    Zerotrees of wavelet coefficients have shown a good adaptability for the compression of three-dimensional images. EZW, the original algorithm using zerotree, shows good performance and was successfully adapted to 3D image compression. This paper focuses on the adaptation of EZW for the compression of hyperspectral images. The subordinate pass is suppressed to remove the necessity to keep the significant pixels in memory. To compensate the loss due to this removal, signed binary digit representations are used to increase the efficiency of zerotrees. Contextual arithmetic coding with very limited contexts is also used. Finally, we show that this simplified version of 3D-EZW performs almost as well as the original one

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    MIMO-OFDM Optimal Decoding and Achievable Information Rates Under Imperfect Channel Estimation

    Full text link
    Optimal decoding of bit interleaved coded modulation (BICM) MIMO-OFDM where an imperfect channel estimate is available at the receiver is investigated. First, by using a Bayesian approach involving the channel a posteriori density, we derive a practical decoding metric for general memoryless channels that is robust to the presence of channel estimation errors. Then, we evaluate the outage rates achieved by a decoder that uses our proposed metric. The performance of the proposed decoder is compared to the classical mismatched decoder and a theoretical decoder defined as the best decoder in the presence of imperfect channel estimation. Numerical results over Rayleigh block fading MIMO-OFDM channels show that the proposed decoder outperforms mismatched decoding in terms of bit error rate and outage capacity without introducing any additional complexity

    Achievable Outage Rates with Improved Decoding of Bicm Multiband Ofdm Under Channel Estimation Errors

    Full text link
    We consider the decoding of bit interleaved coded modulation (BICM) applied to multiband OFDM for practical scenarios where only a noisy (possibly very bad) estimate of the channel is available at the receiver. First, a decoding metric based on the channel it a posteriori probability density, conditioned on the channel estimate is derived and used for decoding BICM multiband OFDM. Then, we characterize the limits of reliable information rates in terms of the maximal achievable outage rates associated to the proposed metric. We also compare our results with the outage rates of a system using a theoretical decoder. Our results are useful for designing a communication system where a prescribed quality of service (QoS), in terms of achievable target rates with small error probability, must be satisfied even in the presence of imperfect channel estimation. Numerical results over both realistic UWB and theoretical Rayleigh fading channels show that the proposed method provides significant gain in terms of BER and outage rates compared to the classical mismatched detector, without introducing any additional complexity
    corecore